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Introduction 
Associative computing applies operations to data based on content rather than address, enabling 
massive parallelism across memory arrays. Compute-in-memory (CIM) extends this concept by 
performing computation directly in or on memory structures, minimizing data movement. 

This whitepaper discusses how GSI Technology’s Associative Processing Unit (APU) performs matrix 
multiplication and then shows why it is a superior solution to achieve TTFT in multimodal LLM with 
Text and Video inputs that are useful for edge physical AI awareness. 

Figure 1 shows a partial representation of the bit-processor structure used in GSI Technology’s CIM 
chip, Gemini-II. This implements a highly optimal RISC Boolean processor due to its ability to read 
multiple memory bit cells onto a single memory line. Multiple word lines could turn on to generate 
Boolean functions on the bit line that would create a collision and garbage on a regular memory and is 
not an allowed operation on general purpose memory. The computation core array and memory cell 
are expounded upon in greater detail in patent US10877731B1. 

 

 

Figure 1: Bit-Processor Structure for Gemini-II 
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Addition and Accumulation 
Figure 2 shows an illustration of a dual port SRAM cell capable of performing a XOR Boolean 
operation and a multi-bit full adder using the XOR capability. These are expounded upon in greater 
detail in patent US11604850B2, particularly their use in creating a hardware in-memory full adder. 

          

Figure 2: Dual Port SRAM Cell 

Ultimate Framework Flexibility 
A key property of bit-line CIM is bit-slice flexibility: 

• Values are represented as collections of bit-planes 

• Precision is controlled by how many bit-planes are processed 

• 1-bit, INT4, INT8, or higher precision (e.g., INT2048) are achieved by iterating over bit-planes 
and accumulating results 

GSI emphasizes 1-bit granularity and user-defined bit frameworks, enabling dynamic precision 
tradeoffs between accuracy, performance, and energy. To provide an example of the flexibility though, 
it is noted that a customer in the medical research industry used this architecture to implement a  
2048-bit “word” for use in molecular representation. 
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MAC Implementation on Bit-Lines 
Let’s start with multiplication. 

Any multi-bit multiplication can be decomposed into bitwise partial products: 

𝑎𝑎 × 𝑏𝑏 = �(
𝑖𝑖,𝑗𝑗

𝑎𝑎𝑖𝑖 ∧ 𝑏𝑏𝑗𝑗) 2𝑖𝑖+𝑗𝑗 

 

Thus, multiplication reduces to: 

1. Bitwise Boolean operations (AND) 

2. Shifts 

3. Addition and accumulation 

Digital CIM arrays are well-suited to step (1) at massive parallelism and can implement steps (2)–(3) 
using in-memory adders. 

 

A multiply-accumulate (MAC) operation computes: 

acc ← acc + (𝑎𝑎 × 𝑏𝑏) 
 

This definition is implementation-independent. A MAC may be: 

• Bit-parallel or bit-serial 

• Single-cycle or multi-cycle 

• Implemented in a CPU, GPU, DSP, ASIC, or inside memory arrays 

Let’s look at 𝑎𝑎 as an n-bit unsigned integer, 𝑏𝑏 as an m-bit unsigned integer, and acc as a k-bit unsigned 
integer accumulator. 

Each Bit-line Processor (BP) in the Gemini-II APU contains local memory and a 1-bit full adder. The 
full adder can perform one full-adder operation per cycle. 

Multiplying an n-bit number by an m-bit number requires n × m full-adder operations. Adding the 
result to the k-bit accumulator acc requires k additional full-adder operations. Therefore, a single MAC 
requires n × m + k full-adder operations when all values are stored in BP memory. 
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All arithmetic described here assumes unsigned integers. 

The Gemini-II APU contains 1 million (2²⁰) Bit-line Processors. Each BP performs one full-adder 
operation per cycle, with a cycle time of 0.83 nanoseconds (1.2GHz clock). 

 

Single MAC Performance 

n (a bits) m (b bits) k = n + m Cycles Gemini-II TOPS 
4 2 6 14 180 
8 2 10 26 97 
8 4 12 44 57 

 

We can also do a sequence of MAC operations.  

In matrix multiplication: 

𝐶𝐶𝑚𝑚,𝑛𝑛 = �𝐴𝐴𝑚𝑚,𝑘𝑘
𝑘𝑘

× 𝐵𝐵𝑘𝑘,𝑛𝑛 

tiles of matrices A and B are loaded into the APU memory. Each BP computes one output element of 
matrix C as a dot product, which consists of a sequence of MAC operations. 

For each MAC in the sequence, a new value of A is broadcast to the Bit-line Processors. 

When multiple MAC operations are performed, the accumulator must be wider to avoid overflow. For 
a sequence of 64 MAC operations, the accumulator size is k = n + m + 6 bits. 

Broadcasting the value of A to the Bit-line Processors takes n + 5 cycles per MAC. 

Performance for 64 MAC Operations 

n (A bits) m (B bits) k (Accumulator bits) Cycles for 64 MACs Gemini-II TOPS 
4 2 12 1856 87 
8 2 16 2880 56 
8 4 18 4032 40 

 

Comparing to Edge GPU Implementation for TTFT 
The Jetson Orin series uses Ampere GPU with varying SMs, CUDA cores, Tensor Cores, and shared 
memory/L1, L2 and DRAM. The Jetson Thor uses a Blackwell GPU with ~20 SMs, 2560 CUDA 
cores, 96 Tensor Cores, ~228 KB shared memory per SM, and ~32 MB L2. 
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Tensor cores operate on matrix fragments in registers, which must be loaded from shared memory. 
General matrix-to-matrix multiplication, GEMM, kernels rely on tiling into SMEM, asynchronously 
copies from generalized memory management to shared memory (GMEM SMEM), and reuse. 
For large GEMMs, performance often becomes memory-/data-movement-bound, not Tensor Core 
FLOP-bound. 

Thus, Tensor Cores raise compute throughput, but do not change the requirements to tile A/B and 
repeatedly move tiles between DRAM, L2, SMEM, and registers when matrices are larger than 
SMEM/L2. 

Consider a single large GEMM on the TTFT critical path (e.g., in Gemma-3 12B + SigLIP): 

• Context length: 1024 tokens. 

• Hidden dimension: 4096. 

• Output dimension: 16,384. 

Matrices: 

• 𝐴𝐴 ∈ ℝ1024×4096 (1024 × 4K). 

• 𝐵𝐵 ∈ ℝ4096×16384 (4K × 16K). 

• 𝐶𝐶 ∈ ℝ1024×16384 (1024 × 16K). 

Assuming float32 (4 bytes): 

• ∣ 𝐴𝐴 ∣= 4,194,304 elements ≈ 16 MB. 

• ∣ 𝐵𝐵 ∣= 67,108,864 elements ≈ 268 MB. 

• ∣ 𝐶𝐶 ∣= 16,777,216 elements ≈ 64 MB.  

One token (row of A) = 4096 × 4 = 16 KB. 
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In Gemini-II compute-in-memory capacity ≈ 96 MB. 

    Max rows of A fitting on-chip: 

• 96 MB/16 KB =~ 6144 rows 

    For a 1024-token context: 

• Entire A fits in compute memory with >5× headroom. 

• A can be loaded once and reused in-place. 
 

    Execution on Gemini-II: 

1. Load A once from DRAM → compute memory: ≈16 MB reads. 

2. Stream B once: ≈268 MB reads. 

3. Perform MACs in-memory using bitwise MAC pipeline. 

4. Write C once back: ≈64 MB writes. 

TTFT is dominated by one pass over A/B and one C write. 

 

On Orin (Ampere): 

• SM shared memory and registers are much smaller than A/B → must tile. 

    Using typical Tensor Core GEMM tiling (per NVIDIA docs): 

• Thread block tile:  TM=64,  TN=128,  TK=128 

• Tiles along M: ⌈1024/64⌉ = 16. 

• Tiles along N: 16384/128 = 128. 

• K-blocks: 4096/128 = 32. 

• Total C tiles: 16 × 128 = 2048. 
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 Each C tile: 

• For each K-block, loads: 

• A sub-tile (64×128) and B sub-tile (128×128) from DRAM/L2 into SMEM. 

• Uses Tensor Core mma instructions on fragments in registers. 

• Writes the C tile once. 

    Effective DRAM read factors for large GEMMs remain approximately: 

• A: ≈32×. 

• B: ≈16×. 

• C: 0–1× reads, 1× writes. 

 

On Thor: 

• Larger shared memory (~228 KB/SM) and ~32 MB L2 help reuse larger tiles. 

• Tensor Memory Accelerator (TMA) optimizes GMEM↔SMEM transfers. 

    Yet, as CUTLASS Blackwell docs and microbenchmarks show: 

• GEMM still uses tiling into SMEM and cluster-level shared memory. 

• Matrices much larger than SMEM/L2 still require multiple DRAM passes. 

    Thor lowers effective DRAM reads per element vs Orin Nano/AGX but does not reach Gemini-II’s 
~1× read. 
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TTFT Summary 
 

 

Summary and Relevance to LLM Workloads (e.g., Gemma-3, 12B) 
Transformer inference relies heavily on matrix multiplication in: 

• Q/K/V projections 

• Attention score computation (QKᵀ) 

• Attention output 

• MLP layers 

This paper showed efficiencies available in the GSI CIM Associative Processing Unit when 
implementing arithmetic logical operations. The combination of dynamic frameworks, and efficient 
data sequencing available through flexible bit-slice arithmetic logic implementation provides multi-
modal vision, text, and sensor LLM processing at latencies that make awareness for edge physical AI. 
For example, running full Gemma-3, 12B with SigLip allows a streaming analysis whereby only the 
first tokens are analyzed for environmental awareness. This was shown to have reduced external 
DRAM transfers, which are the limiting factor for LLMs. This was shown on a recent press release7 on 
a Gemini-II processor such a workload results in 3 second response times (e.g., person performing 
suspicious activity, city infrastructure damaged, etc.) at 30 watts, which is usable for edge awareness 
applications such as smart city pole cameras, autonomous mobile robots, or drones. 

 

 

 

Platform 
A DRAM 

Reads 
B DRAM 

Reads 
C DRAM 

Reads 
C DRAM 

Writes 
Structural Behavior 

Gemini-2 
≈ 16 MB 

(1×) 
≈ 268 MB 

(1×) 
0–64 MB 

≈ 64 MB 
(1×) 

Full A resident in compute memory; 
in-memory MAC; single-pass A/B. 

Orin 
Nano 

≈ 0.54 GB 
(~32×) 

≈ 4.29 GB 
(~16×) 

0–64 MB ≈ 64 MB 
Tensor Core GEMM with SMEM tiling; 

multiple DRAM passes over A/B. 
AGX 
Orin 

≈ 0.54 GB 
(~32×) 

≈ 4.29 GB 
(~16×) 

0–64 MB ≈ 64 MB 
More SMs; same tiling class; DRAM still 

dominates. 
AGX 
Thor 

< Orin, still 
>>16 MB 

< Orin, still 
>>268 MB 

0–64 MB ≈ 64 MB 
Larger SMEM/L2, TMA; reduced but still 

multi-pass over A/B. 
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