Gl zamowe

Matrix Multiplication and Efficiency of
Multimodal LLM with Gemini®-lI

Matrix Multiplication and Efficiency of Multimodal LLM with Gemini-Il

Introduction

Associative computing applies operations to data based on content rather than address, enabling
massive parallelism across memory arrays. Compute-in-memory (CIM) extends this concept by
performing computation directly in or on memory structures, minimizing data movement.

This whitepaper discusses how GSI Technology’s Associative Processing Unit (APU) performs matrix
multiplication and then shows why it is a superior solution to achieve TTFT in multimodal LLM with
Text and Video inputs that are useful for edge physical Al awareness.

Figure 1 shows a partial representation of the bit-processor structure used in GSI Technology’s CIM
chip, Gemini-II. This implements a highly optimal RISC Boolean processor due to its ability to read
multiple memory bit cells onto a single memory line. Multiple word lines could turn on to generate
Boolean functions on the bit line that would create a collision and garbage on a regular memory and is
not an allowed operation on general purpose memory. The computation core array and memory cell
are expounded upon in greater detail in patent US10877731B1.

WBLDbO WBLO RBLOs1 RBLOs1b WBLbn WBLn RBLns1 RBLns1b =

REO
) S)
REDO | @t cen }o| ____ o ca o
ras 1o a R
WEO 00 1] on T = Segment 1
. .
1 1
! !
WL <> > ———— <> rd
- BL Read/Write o BL Read/Write _
Generator ¢ Logic 0 1004 . Logic n 1004 —
1002
REm | |
* ?
REbm Y | f I
o~ cen 9| ______. o Cel o = Segment 2
\mn - 1 mn TY
WEm mo B
s !
RBLOs2 RBL0Os2b RBLns2 RBLns2b

Figure 1: Bit-Processor Structure for Gemini-II

©2026 GSI Technology, Inc.)
DO0127; Rev. 1.01, 2/2026

Matrix Multiplication and Efficiency of Multimodal LLM with Gemini-Il

Addition and Accumulation

Figure 2 shows an illustration of a dual port SRAM cell capable of performing a XOR Boolean
operation and a multi-bit full adder using the XOR capability. These are expounded upon in greater
detail in patent US11604850B2, particularly their use in creating a hardware in-memory full adder.

WBLb

WBL RBL

REb——I M36 _._| M31

__| M32

Db

M3TY
RE
[m
D
|32]
Lz wa
N
WE — L35

—

1230 Row

\ Decoder pg,)it
WE warflasnnnalannnnmnns £

RE ssfssssashannnsansy :...
RED ==[rerrrarekunnnahine.
fyyr=get] EECERE PERRRER FR

[TSCT] [N §-

RE sefssssnalanans
RED =efssssnagashas
WE =s[==resadeesns

TAG

1220

PRE-CHARGER

Computation 1206 [
\ Table \ [?

o

| cHARGER

Column Decoder

Figure 2: Dual Port SRAM Cell

Ultimate Framework Flexibility

A key property of bit-line CIM is bit-slice flexibility:

e Values are represented as collections of bit-planes

e Precision is controlled by how many bit-planes are processed

e 1-bit, INT4, INTS, or higher precision (e.g., INT2048) are achieved by iterating over bit-planes

and accumulating results

GSI emphasizes 1-bit granularity and user-defined bit frameworks, enabling dynamic precision
tradeoffs between accuracy, performance, and energy. To provide an example of the flexibility though,
it is noted that a customer in the medical research industry used this architecture to implement a
2048-bit “word” for use in molecular representation.

©2026 GSI Technology, Inc.

DO0127; Rev. 1.01, 2/2026

Matrix Multiplication and Efficiency of Multimodal LLM with Gemini-Il

MAC Implementation on Bit-Lines

Let’s start with multiplication.

Any multi-bit multiplication can be decomposed into bitwise partial products:

axXb= Z(ai FAN b]) 2i+j
i,Jj

Thus, multiplication reduces to:
1. Bitwise Boolean operations (AND)
2. Shifts
3. Addition and accumulation

Digital CIM arrays are well-suited to step (1) at massive parallelism and can implement steps (2)—(3)

using in-memory adders.

A multiply-accumulate (MAC) operation computes:

acc < acc + (a X b)

This definition is implementation-independent. A MAC may be:
o Bit-parallel or bit-serial
e Single-cycle or multi-cycle
e Implemented in a CPU, GPU, DSP, ASIC, or inside memory arrays

Let’s look at a as an n-bit unsigned integer, b as an m-bit unsigned integer, and acc as a k-bit unsigned
integer accumulator.

Each Bit-line Processor (BP) in the Gemini-II APU contains local memory and a 1-bit full adder. The
full adder can perform one full-adder operation per cycle.

Multiplying an n-bit number by an m-bit number requires n X m full-adder operations. Adding the
result to the k-bit accumulator acc requires k additional full-adder operations. Therefore, a single MAC
requires n X m + k full-adder operations when all values are stored in BP memory.

©2026 GSI Technology, Inc.
DO0127; Rev. 1.01, 2/2026

Matrix Multiplication and Efficiency of Multimodal LLM with Gemini-Il

All arithmetic described here assumes unsigned integers.

The Gemini-II APU contains 1 million (22°) Bit-line Processors. Each BP performs one full-adder
operation per cycle, with a cycle time of 0.83 nanoseconds (1.2GHz clock).

Single MAC Performance

Gemini-II TOPS

4 6 14 180
8 10 26 97
8 12 44 57

We can also do a sequence of MAC operations.

In matrix multiplication:
Cm,n = z Am,k X Bk,n
K

tiles of matrices A and B are loaded into the APU memory. Each BP computes one output element of
matrix C as a dot product, which consists of a sequence of MAC operations.

For each MAC in the sequence, a new value of A is broadcast to the Bit-line Processors.

When multiple MAC operations are performed, the accumulator must be wider to avoid overflow. For
a sequence of 64 MAC operations, the accumulator size is k =n + m + 6 bits.

Broadcasting the value of A to the Bit-line Processors takes n + 5 cycles per MAC.

Performance for 64 MAC Operations
n (A bits) \ m (B bits) | k (Accumulator bits) | Cycles for 64 MACs | Gemini-II TOPS

4 12 1856 87
8 16 2880 56
8 18 4032 40

Comparing to Edge GPU Implementation for TTFT

The Jetson Orin series uses Ampere GPU with varying SMs, CUDA cores, Tensor Cores, and shared
memory/L1, L2 and DRAM. The Jetson Thor uses a Blackwell GPU with ~20 SMs, 2560 CUDA

cores, 96 Tensor Cores, ~228 KB shared memory per SM, and ~32 MB L2.

©2026 GSI Technology, Inc.
DO0127; Rev. 1.01, 2/2026

Matrix Multiplication and Efficiency of Multimodal LLM with Gemini-Il

Tensor cores operate on matrix fragments in registers, which must be loaded from shared memory.
General matrix-to-matrix multiplication, GEMM, kernels rely on tiling into SMEM, asynchronously
copies from generalized memory management to shared memory (GMEM €- SMEM), and reuse.
For large GEMMs, performance often becomes memory-/data-movement-bound, not Tensor Core
FLOP-bound.

Thus, Tensor Cores raise compute throughput, but do not change the requirements to tile A/B and
repeatedly move tiles between DRAM, L2, SMEM, and registers when matrices are larger than
SMEM/L2.

Consider a single large GEMM on the TTFT critical path (e.g., in Gemma-3 12B + SigLIP):
e Context length: 1024 tokens.
e Hidden dimension: 4096.
e Output dimension: 16,384.
Matrices:
o A € R1024X409 (1024 x 4K).
o B € RH096X16384 (4K x |6K).
o (€ R1024X16384 (1024 x 16K).
Assuming float32 (4 bytes):
e | Al=4194,304 elements ~ 16 MB.
e | B|=67,108,864 clements ~ 268 MB.
e | C|=16,777,216 eclements =~ 64 MB.

One token (row of A) =4096 x 4 =16 KB.

©2026 GSI Technology, Inc.
DO0127; Rev. 1.01, 2/2026

Matrix Multiplication and Efficiency of Multimodal LLM with Gemini-Il

In Gemini-II compute-in-memory capacity =~ 96 MB.
Max rows of A fitting on-chip:
e 96 MB/16 KB =~ 6144 rows
For a 1024-token context:
o Entire A fits in compute memory with >5x headroom.

e A can be loaded once and reused in-place.

Execution on Gemini-II:
1. Load A once from DRAM — compute memory: ~16 MB reads.
2. Stream B once: =268 MB reads.
3. Perform MACs in-memory using bitwise MAC pipeline.
4. Write C once back: ~64 MB writes.

TTFT is dominated by one pass over A/B and one C write.

On Orin (Ampere):
e SM shared memory and registers are much smaller than A/B — must tile.
Using typical Tensor Core GEMM tiling (per NVIDIA docs):
e Thread block tile: 7Tw=64, Tn=128 Tx=128
o Tiles along M: [1024/64] = 16.
o Tiles along N: 16384/128 = 128.
o K-blocks: 4096/128 = 32.

e Total C tiles: 16 x 128 = 2048.

©2026 GSI Technology, Inc.
DO0127; Rev. 1.01, 2/2026

Matrix Multiplication and Efficiency of Multimodal LLM with Gemini-Il

Each C tile:
e For each K-block, loads:
e A sub-tile (64x128) and B sub-tile (128x128) from DRAM/L2 into SMEM.
e Uses Tensor Core mma instructions on fragments in registers.
e Writes the C tile once.
Effective DRAM read factors for large GEMMSs remain approximately:
o A:=32x,
e B:=l6x.

e C:0-1x%reads, 1x writes.

On Thor:
o Larger shared memory (~228 KB/SM) and ~32 MB L2 help reuse larger tiles.
o Tensor Memory Accelerator (TMA) optimizes GMEM«—SMEM transfers.
Yet, as CUTLASS Blackwell docs and microbenchmarks show:
e GEMM still uses tiling into SMEM and cluster-level shared memory.
e Matrices much larger than SMEM/L2 still require multiple DRAM passes.

Thor lowers effective DRAM reads per element vs Orin Nano/AGX but does not reach Gemini-II’s
~1x read.

©2026 GSI Technology, Inc.
DO0127; Rev. 1.01, 2/2026

Matrix Multiplication and Efficiency of Multimodal LLM with Gemini-Il

TTFT Summary
A DRAM B DRAM CDRAM CDRAM .
Platform . Structural Behavior
Reads Reads Reads Writes
L. ~16 MB ~ 268 MB =~ 64 MB Full A resident in compute memory;
Gemini-2 0-64 MB . .
(1%) (1x) (1x) in-memory MAC; single-pass A/B.
Orin ~0.54 GB ~4.29 GB Tensor Core GEMM with SMEM tiling;
0-64 MB ~ 64 MB)
Nano (~32x) (~16x) multiple DRAM passes over A/B.
AGX ~0.54 GB ~4.29 GB More SMs; same tiling class; DRAM still
. 0-64 MB ~ 64 MB .
Orin (~32x) (~16x) dominates.
AGX < Orin, still < Orin, still Larger SMEM/L2, TMA; reduced but still
0-64 MB ~ 64 MB)
Thor >>16 MB >>268 MB multi-pass over A/B.

Summary and Relevance to LLM Workloads (e.g., Gemma-3, 12B)

Transformer inference relies heavily on matrix multiplication in:
e Q/K/V projections
e Attention score computation (QKT)
e Attention output
e MLP layers

This paper showed efficiencies available in the GSI CIM Associative Processing Unit when
implementing arithmetic logical operations. The combination of dynamic frameworks, and efficient
data sequencing available through flexible bit-slice arithmetic logic implementation provides multi-
modal vision, text, and sensor LLM processing at latencies that make awareness for edge physical Al.
For example, running full Gemma-3, 12B with SigLip allows a streaming analysis whereby only the
first tokens are analyzed for environmental awareness. This was shown to have reduced external
DRAM transfers, which are the limiting factor for LLMs. This was shown on a recent press release’ on
a Gemini-II processor such a workload results in 3 second response times (e.g., person performing
suspicious activity, city infrastructure damaged, etc.) at 30 watts, which is usable for edge awareness
applications such as smart city pole cameras, autonomous mobile robots, or drones.

©2026 GSI Technology, Inc.
DO0127; Rev. 1.01, 2/2026

Matrix Multiplication and Efficiency of Multimodal LLM with Gemini-Il

References (Complete)

1. GSI CIM Whitepaper (D0069)
https://gsitechnology.com/wp-content/uploads/sites/default/files/ Whitepapers/D0069-GSIT-
Compute-in-Memory-Application.pdf

2. US 10,877,731 B1 — Processing array device that performs one cycle full adder operation and
bit line read/write logic features

3. US 12,423,112 B2 — Pipeline Architecture for Bitwise Multiplier-Accumulator (MAC)

4. US 11,604,850 B2 — In-Memory Full Adder

5. US 10,846,365 B2 — Sparse Matrix Multiplication in Associative Memory Device

6. MICRO’25 Paper (Cornell)
https://www.csl.cornell.edu/~zhiruz/pdfs/apu-micro2025.pdf

7. GSI HPC Overview (1-bit granularity)
https://gsitechnology.com/hpc-overview/

8. Gemma-3 12B TTFT Press-Release

https://ir.gsitechnology.com/news-releases/news-release-details/gsi-technology-reports-3-
second-time-first-token-edge-multimodal

9. Jetson AGX Orin Series Technical Brief:
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf2 1 /jetson-orin/nvidia-jetson-agx-
orin-technical-brief.pdf

10. Jetson Orin NX Data Sheet:
https://developer.nvidia.com/downloads/jetson-orin-nx-series-data-sheet
https://developer.download.nvidia.com/assets/embedded/secure/jetson/orin_nx/docs/Jetson Ori
n NX DS-10712-001 v0.5.pdf

11. Jetson Orin overview:
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/

12. Jetson Thor product page:
https://www.nvidia.com/en-eu/autonomous-machines/embedded-systems/jetson-thor/

©2026 GSI Technology, Inc.
DO0127; Rev. 1.01, 2/2026

10

https://gsitechnology.com/wp-content/uploads/sites/default/files/Whitepapers/D0069-GSIT-Compute-in-Memory-Application.pdf?utm_source=chatgpt.com
https://gsitechnology.com/wp-content/uploads/sites/default/files/Whitepapers/D0069-GSIT-Compute-in-Memory-Application.pdf?utm_source=chatgpt.com
https://www.csl.cornell.edu/%7Ezhiruz/pdfs/apu-micro2025.pdf?utm_source=chatgpt.com
https://gsitechnology.com/hpc-overview/?utm_source=chatgpt.com

Matrix Multiplication and Efficiency of Multimodal LLM with Gemini-Il

13. Jetson Thor Series Modules Data Sheet DS-11945-001:
https://developer.nvidia.com/downloads/assets/embedded/secure/jetson/thor/docs/jetson-thor-
series-modules-datasheet ds-11945-001.pdf

14. Jetson Thor Series Modules Design Guide:
https://developer.nvidia.com/downloads/assets/embedded/secure/jetson/thor/docs/jetson_thor s
eries_modules designguide.pdf

15. Blackwell GPU overview (Thor):
https://developer.ridgerun.com/wiki/index.php/NVIDIA Jetson AGX_ Thor/Blackwell GPU

16. NVIDIA blog:
https://developer.nvidia.com/blog/introducing-nvidia-jetson-thor-the-ultimate-platform-for-
physical-ai/

17. Ampere architecture whitepaper (A100 Tensor Core GPU):
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-
whitepaper.pdf

18. DL performance GEMM guide:
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-
multiplication/index.html

19. PTX ISA (mma instructions):
https://docs.nvidia.com/cuda/parallel-thread-execution/

20. High-performance matmul analysis:
https://aleksagordic.com/blog/matmul

21. Blackwell GEMM & Tensor Memory Accelerator (CUTLASS):
https://research.colfax-intl.com/cutlass-tutorial-writing-gemm-kernels-using-tensor-memory-
for-nvidia-blackwell-gpus/
https://research.colfax-intl.com/cutlass-tutorial-gemm-with-thread-block-clusters-on-nvidia-
blackwell-gpus/
https://docs.nvidia.com/cutlass/4.3.4/media/docs/cpp/blackwell _functionality.html

©2026 GSI Technology, Inc.
DO0127; Rev. 1.01, 2/2026

11

	Introduction
	Addition and Accumulation
	Ultimate Framework Flexibility
	MAC Implementation on Bit-Lines
	Single MAC Performance
	Performance for 64 MAC Operations

	Comparing to Edge GPU Implementation for TTFT
	TTFT Summary

	Summary and Relevance to LLM Workloads (e.g., Gemma-3, 12B)

