
 

Episode 6 

Understanding Time To First Token (TTFT) in Edge AI 

 

[speaker1]: Welcome back to the sixth episode of our podcast! I'm Alec and with me today 
is my co-host, Sofia. Today, we're diving into a crucial metric for large language models on 
edge devices: Time to First Token, or TTFT. 

 

[speaker2]: That's right, Alec. TTFT is the delay between submitting a prompt and receiving 
the very first output token. It also applies when you are asking the same thing but sending 
new inputs, like new pictures. For multimodal LLMs on edge devices, such as in physical AI 
and real-time vision processing, responsiveness is absolutely critical. A slow TTFT will limit 
an application's usefulness in real-time use cases. 

 

[speaker1]: So, let’s set the stage on why TTFT is so high for most edge devices. And more 
importantly, how is GSI Technology's Gemini-II APU flipping the script on that. It turns out 
that before that first token even appears, all inputs, whether text, images, or audio, have to 
go through what's called a 'prefill' stage. This is where the model processes the entire input 
request sequence. Then it moves into a 'decode' stack to generate that initial output token. 

 

[speaker2]: Exactly. And this prefill latency is often dominated by what we call the 'memory 
wall' problem, which hits especially hard in transformer decoders. This is particularly 
crucial for multimodal models, that might combine image, sensor, and textual instruction 
inputs, the first thing they do is prefill. That means running a full pass through every 
transformer layer before producing the first token. 

 

[speaker1]: That's a critical point. During this prefill phase, computation is heavily 
dominated by the widest feed-forward network—or FFN—matrix multiplication operations. 
For instance, in a model like Gemma3 12B, a representative case study, these FFN 
operations involve dimensions of 4k by 16k, even with a minimum prefill sequence of just 
256 tokens from an image. That's a lot of math! 

 



 

[speaker2]: And the real bottleneck isn’t that math. It’s data movement. Specifically, getting 
huge weight matrices and activations where they need to be. On embedded GPUs, 
everything is tiled, shuffled, and repeatedly reread from DRAM because their local 
memories — registers, L1, L2 — are just too small. 

 

[speaker1]: So, if you’ve got something like a 4k by 16k weight matrix, that’s not in a close 
location ready to process. 

 

[speaker2]: Exactly. In current GPU processing it gets broken into dozens of tiles, shuffled 
between layers of cache, and often re-read from DRAM multiple times during prefill. For 
NVIDIA Jetson class devices, this can lead to 6 to 12 second TTFT under multimodal cold 
starts. 

 

[speaker1]: Enter the Gemini-II APU from GSI Technology. Sofia, walk us through what 
makes this chip so different. 

 

[speaker2]: It's all about compute-in-memory. GSI’s production Gemini-II chip’s  in-
memory associative computing, conducts arithmetic operations directly within its massive 
1-million-bit-line SRAM array. This literally transforms the memory fabric itself into the 
computational substrate, enabling operations to happen right where the data is stored. It's 
a game-changer for efficiency. 

 

[speaker1]: And what’s remarkable are the architectural features that enable this: Each bit 
line contains 48 associative cells for direct computation, tightly integrated with SRAM bytes 
for additional temporary storage, large accumulation, and data retention. It boasts a 
massive 96 Megabytes of on-chip memory with an internal bandwidth of 367 Terabits  per 
second, essentially providing a high-density, high-bandwidth shared register space, but on 
a massive scale. 

 

[speaker1]: This substantial on-chip capacity is key. It allows the entire input vector to be 
stored and FFN weight block argument to be co-located with accumulators for the 
complete prefill window. This means FFN node execution happens in a single, streamed 



 

pass with in-place accumulation, entirely eliminating duplicated DRAM access for weights. 
It’s a huge shift from conventional methods. 

 

[speaker2]: So instead of shuffling tiles between SMs, L1s, and L2 caches as in GPUs, this 
translates to eliminating redundant DRAM access, reducing DRAM traffic by over 30x during 
first token inference. This frees up crucial bandwidth, and drastically improves energy 
efficiency. By optimizing matrix operations and accumulations directly inside this high-
capacity compute-in-memory, GSI’s APU significantly shortens TTFT. 

 

[speaker2]: So, what kind of edge applications would truly benefit from such accelerated 
TTFT? Think anything that is performing physical AI. Drones, autonomous robots, or 
autonomous vehicles that need to process complex sensor data and respond in real time. 
Any edge AI application where immediate feedback is crucial would see a huge 
improvement. 

 

[speaker1]: Traditional GPU/TPU-style accelerators often struggle here due to insufficient 
on-chip memory capacity, often only tens to hundreds of kilobytes of fast memory per SM. 
This forces them into fragmented computation—think tiling, micro-batching, and constant 
reload cycles from off-chip memory. This not only creates duplicated off-chip memory 
traffic, but also results in incredibly ineffective bandwidth utilization, even with high-
bandwidth memory systems like LP-DDR5 found on an NVIDIA Jetson Orin and AGX or 
Qualcomm Snapdragon X Elite. It’s a fundamental bottleneck for fast TTFT. 

 

[speaker2]: Precisely. The APU really expands the market for edge AI by overcoming these 
inherent limitations. It’s not just about speed; it's about enabling entirely new classes of 
responsive, complex AI workloads right where the data is stored, without the need for  
cloud connectivity. 

 

[speaker1]: To wrap up, the APU truly stands out as an edge AI accelerator. Its flexible 
precision support—through bit-granular operations—enables software-controlled 
selection of ultra-low formats like binary and ternary, standard integers (2, 3, 4, and 8-bit), 
and even floating-point (16 and 32-bit). This means it can preserve accuracy while shrinking 



 

the memory footprint and significantly reducing both off-chip traffic and energy 
consumption. It’s a powerful, efficient solution for the future of edge AI. 

 

[speaker2]: And the result? This innovative approach moves Time to First Token and 
decisions from a frustrating several-second delay into near-real-time territory, making truly 
responsive AI a reality for a vast array of edge deployment scenarios. 

 

[speaker1]: Thanks for listening and please reach out to GSI Technology for more details on 
the Gemini class of APU parts available now for your embedded edge applications.  

 

 


